Python program to find all the roots of a given cubic equation
# Python program to find all the roots of a given cubic equation import fractions print("The equation is-\n \t ax^3 + bx^2 + cx + d = 0") a = eval(input("Enter the value of a\t")) b = eval(input("Enter the value of b\t")) c = eval(input("Enter the value of c\t")) d = eval(input("Enter the value of d\t")) roots = [] coef = [a, b, c, d] def quad(p, q, r): if p == 0: return lin1(q, r) else: a1 = [((-q + ((q ** 2 - 4 * p * r) ** 0.5)) / (2 * p)), ((-q - ((q ** 2 - 4 * p * r) ** 0.5)) / (2 * p))] if type(a1[0]) == complex: t2 = [] for li in a1: if li.imag != 0: x = float(fractions.Fraction(li.real).limit_denominator()) y1 = round(li.imag, 3) z = complex(x, y1) t2.append(z) else: pass try: return t2 except: return a1 def lin2(a1, b1, c1, a2, b2, c2): global d global m global n global o if a2 == 0: global y y = lin1(b2, c2) x = lin1(a1, (b1 * y) + c1) return [x, y] d = a1 / a2 m = a1 - (d * a2) n = b1 - (d * b2) o = c1 - (d * c2) y = (-o / n) d = b1 / b2 m = a1 - (d * a2) n = b1 - (d * b2) o = c1 - (d * c2) x = (-1 * (lin1(a1, (b1 * y) + c1)) / n) return [x, y] def point_slope(u1, x, z): return lin2(u1, -1, (z - (u1 * x)), 0, 1, 0)[0] def lin1(a2, b2): return -b2 / a2 def val_cube(x): return a * (x ** 3) + b * (x ** 2) + c * x + d def val_quad(x): return m * (x ** 2) + (n * x) + o def lin_div(r, p, args): global m q = [] m = (-p/r) s = 0 step = 0 for pi in args: if s == 0: step = pi q.append(pi) else: step = step*m + pi q.append(step) s = s + 1 return q m = 3 * a n = 2 * b o = c u = 2 * m v = n if a == 0: if b != 0: if c == 0: if d == 0: print("The solution of the quadratic equation is", quad(b, c, d)) if d != 0: print("The roots of the quadratic equation are", quad(b, c, d)) if c != 0: print("Since a = 0 therefore the equation is quadratic") print("The roots of the quadratic equation are", quad(b, c, d)) if b == 0: if c == 0: if d == 0: print("The equation has no solution") if d != 0: print("The equation has no solution") if c != 0: print("The root of the linear equation is", -d/c) if d == 0: if a != 0: f = quad(a, b, c) f.append(0) print("The roots of the equation are", f) if a != 0: if d != 0: trial = 500.0 sol = [] num = 10 while True: slope = val_quad(trial) y = val_cube(trial) if y < 10 ** (-num): if y > -10 ** (-num): abc = round(trial, 2) if a not in sol: sol.append(abc) break trial = (point_slope(slope, trial, y)) quadr = (lin_div(1, -sol[0], coef)) quad1 = [] for i in quadr[0:3]: i = float(i) quad1.append(fractions.Fraction(i).limit_denominator()) sol.append(quad(quad1[0], quad1[1], quad1[2])) print("The roots of the cubic equation are", sol)
Output:
The equation is- ax^3 + bx^2 + cx + d = 0 Enter the value of a 4 Enter the value of b 4 Enter the value of c 2 Enter the value of d 3 The roots of the cubic equation are [-1.14, [(0.07+0.809j), (0.07-0.809j)]] >>>